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Modular HTGR Safety Design Objectives and 
Requirements
Deployment Objectives 
• Flexibly co-locate with new industry users of nuclear energy
• Steam and electric cogeneration applications
• Direct process heat with temperature ranges from 700°C to 950°C

Enabling Requirements
• Meet regulatory dose limits at the Exclusion Area Boundary (EAB)

§ 25 rem Total Effective Dose Equivalent (TEDE) for duration of the release from 10 CFR 
50.34 (10 CFR 52.79) at Exclusion Area Boundary (EAB) for design basis accidents

§ EAB is estimated approximately 400 meters from the modular HTGR plant (to support 
co-location with industrial facilities)

• Meet safety goals for cumulative individual risk for normal and off-normal 
operation

• Design goal: meet EPA Protective Action Guides (PAGs) at EAB
§ 1 rem TEDE for sheltering
§ Design basis and beyond design basis events are considered
§ Realistically evaluated at the EAB
§ Emergency planning and protection
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Modular HTGR Safety Basis and Approach paper submitted Sept 2011 to NRC for information (INL/EXT-11-22708)

Modular HTGR Safety Design Approach

• Utilize inherent material properties as basis for safety
§ Helium coolant – neutronically transparent, chemically inert, low heat capacity, single 

phase
§ Ceramic coated (TRISO) particle fuel – high temperature capability, high radionuclide 

retention
§ Graphite moderator – high temperature stability, large heat capacity, long thermal 

response times 
• Simple reactor design with inherent and passive safety features

§ Retain most radionuclides at source (i.e., within fuel)
§ Shape and size reactor to allow passive heat removal from reactor core using 

uninsulated reactor vessel
• Heat is still removed if system is depressurized due to breach in reactor helium pressure 

boundary (HPB)
• Heat is radiated from reactor vessel to RCCS panels

§ Large negative temperature coefficient supports intrinsic reactor shutdown
§ No reliance on AC-power to perform required safety functions
§ No reliance on operator intervention; insensitive to incorrect operator actions or 

inactions
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Radionuclide Retention within Modular HTGR 
Fuel Depends on Three Functions
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in Coated Particles

Remove Core Heat Control Heat 
Generation
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Control Heat Generation

Accomplished by Intrinsic Shutdown and Reliable Control Material Insertion 

• Large negative temperature coefficient intrinsically shuts reactor down

• Two independent and diverse systems of reactivity control for reactor shutdown; 
drop by gravity on loss of power
§ Control rods
§ Reserve shutdown system

• Each system capable of maintaining subcriticality 

• One system capable of maintaining cold shutdown during refueling

• Neutron control system measurement and alarms
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Typical Reactivity Control

• Two independent, rod banks 
• Articulated rods suspended from drives by 

chains to be lowered into the radial 
reflector 

• Bypass flow cools the rods
• Rods may be partially inserted during 

power operation to provide Xe restart/load 
follow capability

• Prismatic – Shutdown rods can inserted 
into fuel blocks

• PBR – Small absorber spheres have been 
used in past designs (not in X-energy 
XE-100)

• Stronger negative fuel temperature 
feedback
§ HTGR: -7 pcm/K
§ PWR: -1 to -4 pcm/K 
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Both AVR and HTR-10 can be shut down 
without rods – circulators are stopped to 
affect a core heatup and Doppler 
shutdown.



Remove Residual Core Heat 

Accomplished by Passive Design Safety Features

• Small thermal rating/low core power density 

• Core geometry
§ Long, slender or annular cylindrical geometry
§ Heat removal by passive conduction and radiation
§ High heat capacity graphite
§ Slow heat up of massive graphite core

• Uninsulated reactor vessel

• Reactor Cavity Cooling System (RCCS)
§ Separate and distinct from reactor vessel system
§ Natural convective circulation of air or water during accident conditions

• Atmosphere is ultimate heat sink

7



REPLACEABLE CENTRAL
& SIDE REFLECTORS

CORE BARREL

ACTIVE CORE
102 COLUMNS
10 BLOCKS HIGH

PERMANENT
SIDE
REFLECTOR

Annular core 
geometry:
1) Shortens heat 

conduction 
pathway

2) Enhances surface 
to volume ratio

Annular Core Optimizes Passive Heat Removal
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Example: Annular Core Pebble Bed

Passive Heat Transfer Path
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Reactor Cavity Cooling System (RCCS)

• Typically safety-related in modular HTGR applications

• Consists of cooling panel structures that surround the reactor vessel

• Removes heat transmitted from vessel via radiation and convection 

• Always operates to remove heat during both normal and off-normal operations

• All RCCS designs passively remove heat during all off-normal events via natural 
convection air or natural circulation water flow

• A simple and reliable means of residual heat removal
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• Meets all requirements with ample margin and 
redundancy

• Natural convection Shutdown heat removal Test 
Facility (NSTF) at Argonne National Laboratory



Key RCCS Design Considerations

• RCCS maintains concrete cavity wall and reactor vessel temperatures
§ Concrete cavity temperatures are strongly related to RCCS performance

• RCCS operation is not typically required to protect fuel

• Heat removal rates are similar during normal operations and accident 
conditions

• RCCS is a simple system that functions passively when required during 
off-normal conditions

• Various air- or water-cooled RCCS configurations are possible

• Normal plant operation provides ongoing confirmation of RCCS system 
status
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Control of Chemical Attack – Air

Assured by Passive Design Features and Inherent Characteristics

• Inert coolant (helium) 

• High integrity nuclear grade pressure vessels make large breaks 
exceedingly unlikely

• Air ingress limited by core flow area and friction losses

• Reactor embedment and building vents close after venting, thereby 
limiting potential air in-leakage

• Graphite fuel form, fuel compact matrix, and ceramic coatings 
protect fuel particles

• Graphite exhibits slow oxidation rate (high purity nuclear grade 
graphite will not “burn”) 
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Control of Chemical Attack – Moisture

Assured by Passive Design Features and Inherent Characteristics

• Non-reacting coolant (helium) 

• Limited sources of water in steam cycle plants
§ Moisture monitors
§ Steam generator isolation (does not require AC power)
§ Steam generator dump system

• Water-graphite reaction:
§ Endothermic
§ Requires temperatures > normal operation 
§ Slow reaction rate

• Graphite fuel form, fuel compact matrix, and ceramic coatings protect fuel 
particles
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Functional Radionuclide Containment

• Modular HTGRs employ “functional containment” for radionuclide control

• Eliminates need for “traditional” pressure retaining containment structure

• Functional containment is a collection of design choices that, when operated 
together, ensure that:
§ Radionuclides are retained within an independent multi-barrier system
§ Emphasis is on radionuclide retention at source (i.e., in the fuel)
§ NRC regulatory requirements (10 CFR 50.34/10 CFR 52.79) and plant design 

goals (PAGs) for release of radionuclides are met at the EAB

• See SECY-18-0096 and RG 1.232 for further information on functional 
containment performance criteria for non-LWRs
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Modular HTGR Functional Containment

• Fuel Kernel

• Fuel Particle Coatings

• Matrix/Graphite

• Helium Pressure Boundary

• Reactor Building

Fuel Element

5 Radiological Release Barriers 
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Fuel Particles Retain Radionuclides Well Above Normal 
Operation Temperatures
• Normal operating peak fuel temperature is <1250°C. Testing shows RN retention 

for hundreds of hours at >1600°C without fuel particle failure

• Large temperature margins enable:
§ Passive heat removal independent of coolant pressurization
§ Greater use of negative temperature coefficient for intrinsic reactor shutdown

• Most radionuclides reach steady state concentration/distribution in primary circuit 
§ Exceptions are long lived isotopes (i.e., Cs-137 and Sr-90) where plateout 

inventory builds over time

• Concentration and distribution are affected by:
§ Radionuclide half-life
§ Initial fuel quality
§ Incremental fuel failures during normal operation
§ Fission product fractional release from fuel kernel
§ Transport of fission products through particle coatings, matrix, and graphite
§ Fission product sorptivity on fuel matrix and graphite materials
§ Fission product sorptivity on primary circuit surfaces (i.e., plateout)
§ Helium purification system performance
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Helium Pressure Boundary (HPB) Releases

• Potential radionuclide release mechanisms
§ Primary coolant leaks
§ Liftoff (mechanical reentrainment)
§ Steam-Induced vaporization
§ Washoff (removal by liquid H2O) 
§ Primary coolant pressure relief

• Controlling parameters
§ Size/location of coolant leaks/breaks
§ Temperatures
§ Particulate matter 
§ Steam/liquid H2O ingress and egress

• Barrier performance
§ Condensable radionuclides (RNs) plate out during normal operation
§ Circulating Kr and Xe limited by Helium Purification System (HPS)
§ Plateout retained during leaks and largely retained during rapid depressurizations
§ RN holdup after core heatup due to thermal contraction of gas
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Initial RN Release Mechanisms for HPB Sources

• Circulating activity
§ Released from HPB with helium in minutes to days as a result of HPB 

leak/break 
§ Amount of release depends on location of leak/break and any operator actions 

to isolate and/or intentionally depressurize

• Liftoff of plateout and resuspension of dust
§ For large breaks, fractional radionuclide amounts released from HPB with 

helium relatively quickly (minutes)
§ Amount of release depends on HPB break size and location
§ Surface shear forces must exceed those for normal operation to obtain liftoff or 

resuspension

18



Delayed RN Release Mechanisms From Core

• Delayed releases occur only for accidents involving a core heatup

• Partial release from contamination, initially failed/defective particles when temps 
exceed normal levels, and particle failures during event

• Timing of release is tens of hours to days

• Delayed inventory may be larger than circulating activity and liftoff mechanisms

• Releases from fuel depend on fraction of core above normal operation 
temperatures for a given time and on associated radionuclide volatility
§ Governed by amount of forced cooling
§ Dependent on size of leak or break

• Delayed releases from HPB depends on location/size of leak/break and timing 
relative to HPB gas expansion and contraction during core transient
§ Small leaks can potentially lead to a greater HPB RN release
§ Releases cease when internal HPB temps decrease due to core cooldown
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Typical Core Temperatures Following 
Depressurized Loss of Forced Cooling

20
350 MWt Prismatic Core Design



Role of Reactor Building in Safety Design

• Structurally protects pressure vessels 
and RCCS from internal and external 
hazards

• Limits air available for ingress after HPB 
depressurization

• Provides structural support for RCCS 
and helium depressurization pathway

• Provides additional radionuclide 
retention opportunity

• Is not relied upon for radionuclide 
retention to meet off-site dose regulatory 
requirements
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Design Issues for Vented Reactor Building

• Matched to modular HTGR accident behavior
§ Reactor building is vented early in a helium pressure boundary break 

scenario (when the helium circulating activity is low)
§ The reactor building vent is closed later in the transient (when the particle 

fuel experiences maximum temperatures)
§ Prevents reactor building overpressure from release of non-condensing 

helium coolant

• Provides a more benign environment for the passive Reactor Cavity 
Cooling System (RCCS)
§ Heat
§ Pressure
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The Modular HTGR Safety Approach

• Functional containment employs multiple independent and diverse 
barriers that work together to negate the need for a single-walled 
pressure-retaining structure

• Fuel has very large temperature margin in both normal and accident 
conditions

• TRISO fuel failure is function of time at temperature; no cliff-edge effects

• Fuel, helium, and graphite moderator are chemically compatible under all 
licensing basis conditions

• Safety is independent of primary circuit circulation or pressure; helium 
pressure loss does not transfer large energy load to reactor building

• Reactor response times are very long (i.e., days, not seconds or minutes)

• No inherent mechanism exists for runaway reactivity or power excursions
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Key mHTGR Design Criteria

• MHTGR-DC 10
§ Specified acceptable fuel design limit (SAFDL) does not align with the 

mHTGR safety design approach 
§ Replace with specified acceptable system radionuclide release design 

limits (SARRDL); to be defined by applicant to protect fuel during AOOs

• MHTGR-DC 16
§ Allows use of “functional containment” by multiple barriers
§ Eliminates need for pressure-retaining containment structure requirements

• MHTGR-DC 17
§ All SR power needs must be met for all applicable plant conditions
§ Battery power may be required for certain mHTGR event conditions

• MHTGR-DC 34
§ RCCS (passively) removes residual heat under off-normal conditions. 
§ Provides for eliminating emergency core cooling system (ECCS)
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Other mHTGR Design Criteria Considerations

• Reactor coolant makeup: helium pressure is not needed to remove heat from core 
(passive heat removal is used)

• Containment heat removal/atmospheric cleanup/cooling systems: mHTGRs do 
not employ LWR-style containment; heat removal is assured by other design 
criterion applicable to modular HTGRs

• Containment design/leak rate testing/containment isolation: functional 
containment design is addressed by the full range of mHTGR design criteria and 
includes new reactor building requirements

• New mHTGR reactor building design requirements
§ MHTGR-DC 70: Reactor vessel and reactor system structural design – maintain core 

integrity
§ MHTGR-DC 71: Reactor building design basis – protect and maintain passive cooling 

geometry and provide helium vent path
§ MHTGR-DC 72: Reactor building inspection – assure reactor building will perform 

required safety function
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Major Take-Aways in Safety Design Approach

• Top-down mHTGR safety design emphasizes retention of radionuclides 
within very high quality TRISO fuel particles

• Independent barriers provide defense-in-depth that limit and attenuate 
radionuclide releases under all LBE conditions

• Residual core heat removal by passive means

• Large negative temperature coefficients
§ Shutdown without rod motion

• Overall plant design limits air/water ingress
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Suggested Reading

• NGNP White Papers 
§ NGNP Fuel Qualification, July 2010 (ML102040261) 
§ Mechanistic Source Terms, July 2010 (ML102040260) 

• INL/EXT-11-22708, Modular HTGR Safety Basis and Approach, August 2011 
(ML11251A169) 

• NGNP – Encl. 1, Summary Feedback on Four Key Licensing Issues, July 2014 
(ML14174A774) 

• INL/EXT-14-31179, Guidance for Developing Principal Design Criteria for 
Advanced (Non-Light Water) Reactors, Rev 1, December 2014 (ML14353A246, 
ML14353A248) 

• RG-1.232, Guidance for Developing Principal Design Criteria for Non-Light Water 
Reactors, Appendix C – mHTGR-DC, April 2018 (ML17325A611) 

• SECY-18-0096, Functional Containment Performance Criteria for Non-Light Water 
Reactors, w/ Encl. 1 and Encl. 2, September 28, 2018 (ML18115A157, 
ML18115A231, ML18115A367)

• ANL-SMR-8, Design Report for the 1/2 Scale Air-Cooled RCCS Tests in the 
NSTF, June 2014
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